Sprungmarken

Servicenavigation

Hauptnavigation

Sie sind hier:

Hauptinhalt

Experimentelle Physik III - Arbeitsgruppe Prof. Suter

NV Center

NV The nitrogen-vacancy (NV) center is one of the most important defects in diamond, in particular in the negatively charged (NV-) state. We are particularly interested in the electronic and nuclear spins of this center, which can be used for quantum information processing, as well as for sensing applications. These applications use the excellent stability of the center and the long relaxation times, which allow sufficient time for implementing quantum information tasks or using the spin for sensing applications. Additional details are given in this review article.

Hyperfine interaction between the NV electron spin and a first-shell 13C nuclear spin

Htensor The electron spin of the NV center has large hyperfine coupling with the 13C nuclear spin of the first coordinate shell, which is particularly attractive for implementing fast multiqubit quantum gates. However, full exploitation of this interaction for any application requires precise knowledge of the hyperfine tensor. We determined this tensor accurately by a detailed analysis of experimental data including measurements of electronic and nuclear spin transitions for different orientations of the static magnetic field. The nuclear spin transition, which is important for a precise determination of the transverse components of the hyperfine tensor, was measured by a Raman-excitation and detection scheme. From the analysis of the experimental data, we could determine the principal values and the orientation of the hyperfine tensor with respect to the atomic structure of the NV center.

Relevant Publications:

[1] Robust dynamical decoupling for arbitrary quantum states of a single NV center in diamond
J. H. Shim, I. Niemeyer, J. Zhang and D. Suter
EPL (Europhysics Letters) 99, 40004 (2012)

[2] Room-temperature high-speed nuclear-spin quantum memory in diamond
J. H. Shim, I. Niemeyer, J. Zhang and D. Suter
Phys. Rev. A 87, 012301 (2013)

[3] Broadband excitation by chirped pulses: application to single electron spins in diamond
I. Niemeyer, J. H. Shim, J. Zhang, D. Suter, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya and F. Jelezko
New J. Phys. 15, 033027 (2013)

[4] Experimental Implementation of Assisted Quantum Adiabatic Passage in a Single Spin
J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J. Isoya and D. Suter
Phys. Rev. Lett. 110, 240501 (2013)

[5] High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond
P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya and J. Wrachtrup
Nano Letters 13, 2738-2742 (2013)

[6] Protected Quantum Computing: Interleaving Gate Operations with Dynamical Decoupling Sequences
J. Zhang, A. M. Souza, F. D. Brandao and D. Suter
Phys. Rev. Lett. 112, 050502 (2014)

[7] Experimental Protection of Two-Qubit Quantum Gates against Environmental Noise by Dynamical Decoupling
J. Zhang and D. Suter
Phys. Rev. Lett. 115, 110502 (2015)

[8] Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond
K. R. K. Rao and D. Suter
Phys. Rev. B 94, 060101 (2016)